{-# OPTIONS --allow-unsolved-metas #-} module Verona2024.Basics.Minima where open import Verona2024.Basics.Common HasMin : (ℕ → Set) → Set HasMin X = Σ[ n ∈ ℕ ] X n ∧ ((m : ℕ) → X m → n ≤ m) Detachable : (ℕ → Set) → Set Detachable X = (n : ℕ) → X n ∨ ¬ (X n) LEM : Set₁ LEM = (P : Set) → P ∨ (¬ P) triv : (X : ℕ → Set) → X zero → HasMin X triv X 0∈X = zero , 0∈X , λ m m∈X → ≤-base shift : (ℕ → Set) → (ℕ → Set) shift X = λ n → X (succ n) module _ {X : ℕ → Set} where lemma : ¬ (X zero) → HasMin (shift X) → HasMin X lemma p (n , n∈X' , n-min) = succ n , n∈X' , go where go : (m : ℕ) → X m → succ n ≤ m go zero zero∈X = ⊥-elim (p zero∈X) go (succ m) succm∈X = ≤-succ (n-min m succm∈X) a : (X : ℕ → Set) (x₀ : ℕ) → X x₀ → Detachable X → HasMin X a X zero x₀∈X dec = triv X x₀∈X a X (succ x₀) succx₀∈X dec with dec zero ... | left p = triv X p ... | right p = lemma p (a (shift X) x₀ succx₀∈X dec') where dec' : Detachable (shift X) dec' n = dec (succ n) return : {A : Set} → A → ¬ ¬ A return x = λ k → k x oracle : {A : Set} → ¬ ¬ (A ∨ ¬ A) oracle = λ k → k (right (λ x → k (left x))) _⟫=_ : {A B : Set} → ¬ ¬ A → (A → ¬ ¬ B) → ¬ ¬ B h ⟫= f = λ k → h (λ x → f x k) ¬¬-map : {A B : Set} → (A → B) → (¬ ¬ A → ¬ ¬ B) ¬¬-map f h = λ k → h (λ z → k (f z)) b : (X : ℕ → Set) (x₀ : ℕ) → X x₀ → ¬ ¬ HasMin X b X zero zero∈X = return (triv X zero∈X) b X (succ x₀) succx₀∈X = oracle ⟫= go where go : X zero ∨ ¬ (X zero) → ¬ ¬ HasMin X go (left p) = return (triv X p) go (right p) = ¬¬-map (lemma p) (b (shift X) x₀ succx₀∈X) data ⊤ : Set where tt : ⊤ ¬succ≤zero : {n : ℕ} → ¬ (succ n ≤ zero) ¬succ≤zero () c : ((X : ℕ → Set) (x₀ : ℕ) → X x₀ → HasMin X) → LEM c r P = go (r X (succ zero) tt) where X : ℕ → Set X zero = P X (succ _) = ⊤ go : HasMin X → P ∨ ¬ P go (zero , n∈X , n-min) = left n∈X go (succ n , n∈X , n-min) = right (λ p → ¬succ≤zero (n-min zero p))