{-# OPTIONS --allow-unsolved-metas #-}
module Verona2024.Basics.EpistemicRiddle where
open import Verona2024.Basics.Common
postulate
ℝ : Set
_+_ : ℝ → ℝ → ℝ
_-_ : ℝ → ℝ → ℝ
_*_ : ℝ → ℝ → ℝ
Algebraic : ℝ → Set
sum-algebraic : {x y : ℝ} → Algebraic x → Algebraic y → Algebraic (x + y)
product-algebraic : {x y : ℝ} → Algebraic x → Algebraic y → Algebraic (x * y)
two : ℝ
onehalf : ℝ
π : ℝ
e : ℝ
eq₁ : (x y : ℝ) → ((x + y) + (x - y)) ≡ (two * x)
eq₂ : (x : ℝ) → (onehalf * (two * x)) ≡ x
Transcendental : ℝ → Set
Transcendental x = ¬ Algebraic x
postulate
onehalf-algebraic : Algebraic onehalf
pi-transcendental : Transcendental π
e-transcendental : Transcendental e
theorem₁ : ¬ (Algebraic (e + π) ∧ Algebraic (e - π))
theorem₁ (p , q) = e-transcendental e-algebraic
where
r : Algebraic (two * e)
r = subst Algebraic (eq₁ _ _) (sum-algebraic p q)
e-algebraic : Algebraic e
e-algebraic = subst Algebraic (eq₂ _) (product-algebraic onehalf-algebraic r)
theorem₂ : ¬ (Algebraic (e + π) ∧ Algebraic (e * π))
theorem₂ (p , q) = {!!}
postulate
de-morgan : {A B : Set} → ¬ (A ∧ B) → ¬ A ∨ ¬ B
theorem₁' : Transcendental (e + π) ∨ Transcendental (e - π)
theorem₁' = de-morgan theorem₁
theorem₂' : Transcendental (e + π) ∨ Transcendental (e * π)
theorem₂' = de-morgan theorem₂